General Information:

- This document was created for use in the "Bridges to Computing" project of Brooklyn College.
- You are invited and encouraged to use this presentation to promote computer science education in the U.S. and around the world.
- For more information about the Bridges Program, please visit our website at: http://bridges.brooklyn.cuny.edu/

Disclaimers:

- All images in this presentation were created by our Bridges to Computing staff or were found online through open access media sites and are used under the Creative Commons Attribution-Share Alike 3.0 License.
- If you believe an image in this presentation is in fact copyrighted material, never intended for creative commons use, please contact us at http://bridges.brooklyn.cuny.edu/ so that we can remove it from this presentation.
- This document may include links to sites and documents outside of the "Bridges to Computing" domain. The Bridges Program cannot be held responsible for the content of 3rd party sources and sites.
Topics:

- What is a robot?
- Robot Components
- Introduction to the course robots (RCX)
- Programming in Robolab
A robot is an autonomous system which exists in the physical world that can sense its environment and act on its environment to achieve some goals.

Robotics: The study of robots: their design, construction, capabilities and purpose.
(3) Robot Components

- A robot is an autonomous system (agent) which **exists in the physical world** (is embodied), that can **sense** its environment (including its own internal state) and **act** on its environment to **achieve some goals**.

- So our robot must have:
 1. A body
 2. Sensors
 3. Effectors
 4. A controller
(3) Embodiment

- In a software environment (ex: a game world) we get to make the rules, and we can let an agent do anything we want.

- In the real world:
 - The laws of physics apply (gravity, friction, entropy).
 - Objects can't overlap (collision avoidance).
 - Physical bodies have range, strength, distance and shape limitations.
 - Physical bodies have time limitations.
A robot gathers information about its state and the environment via sensors.

Sensors can be classified as active and passive.

Typically a robot has a suite of sensors capable of monitoring numerous features, such as battery level, odometry, and distance to nearby objects.

With this information, the robot can determine its current state.

The robot can then use this state information to decide what actions are appropriate.

In the end, all sensors are converting a physical property, into an electronic signal.
(3) Types of Sensors

<table>
<thead>
<tr>
<th>Property being sensed</th>
<th>Type of sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact</td>
<td>bump, switch</td>
</tr>
<tr>
<td>distance</td>
<td>ultrasound, radar, infra-red, laser</td>
</tr>
<tr>
<td>light level</td>
<td>photo cell, camera</td>
</tr>
<tr>
<td>sound level</td>
<td>microphone</td>
</tr>
<tr>
<td>smell</td>
<td>chemical</td>
</tr>
<tr>
<td>temperature</td>
<td>thermal</td>
</tr>
<tr>
<td>inclination</td>
<td>gyroscope</td>
</tr>
<tr>
<td>rotation</td>
<td>encoder</td>
</tr>
<tr>
<td>pressure</td>
<td>pressure gage</td>
</tr>
<tr>
<td>altitude</td>
<td>altimeter</td>
</tr>
</tbody>
</table>
(3) Action

- Effectors enable a robot to take action, to change the state of the world (including its own position).
- Actuators are the underlying mechanisms (muscles, motors, solenoids) which do the actual work.
- Main action activities are:
 - Locomotion (moving around)
 - Manipulation (handling objects)
- Degrees of freedom: Refers to the range of motion, the dimensions in which a manipulator can move
(3) Controllers

- Robots utilize small, highly specialized computers to allow them to reason about their world.
- The kind of reasoning employed varies (reflexive reasoning versus "intelligence").
- We can talk about two kinds of intelligence in our controllers.
 - Reasoning (if/then)
 - Learning (this is what the past was like...so...)
State

- May be hidden, partially observable, observable (don't have perfect knowledge in the real world).
- May be discrete (0/1) or continuous (3.33 m/sec).
- State space refers to all of the possible values (may be infinite) that a system's state could be in.
- We can conceptualize both an internal and external state space.
- Robots may carry around a representation (model) of the external world, as part of their internal state.
The RCX is the controller (the brain) of the MINDSTORM.

It has:

- An IR transceiver
- 3 input ports (1-3)
 - light sensors
 - bumpers
- 3 output ports (A-C)
 - motors
 - lights
(3) For the Hardware Junkies

<table>
<thead>
<tr>
<th>hardware</th>
<th>spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>8-bit Hitachi H8/3292, 16 MHz</td>
</tr>
<tr>
<td>ROM (Read Only Memory)</td>
<td>16 KB</td>
</tr>
<tr>
<td>SRAM, on chip</td>
<td>512 bytes</td>
</tr>
<tr>
<td>SRAM (Random Access Memory), external</td>
<td>16 KB</td>
</tr>
<tr>
<td>Outputs</td>
<td>3 motor ports, 9V 500 mA</td>
</tr>
<tr>
<td>Inputs</td>
<td>3 sensor ports</td>
</tr>
<tr>
<td>Display</td>
<td>1 LCD</td>
</tr>
<tr>
<td>Sound</td>
<td>1 sound unit</td>
</tr>
<tr>
<td>Timers</td>
<td>4 System timers (8-bit)</td>
</tr>
<tr>
<td>Batteries</td>
<td>6x 1.5V</td>
</tr>
<tr>
<td>Power adapter (only in RIS 1.0)</td>
<td>9-12V, DC/AC</td>
</tr>
<tr>
<td>Communications</td>
<td>IR port (transmitter and receiver)</td>
</tr>
</tbody>
</table>
(3) Programming

- You will write your programs on a computer and download them to the RCX using an IR transmitter ("communications tower").
- We will use Robolab a VPL (Visual Programming Language) IDE (integrated development environment) to write our programs.
- There are other program interfaces to the RCX.
There is an example program on the next slide.

Discuss the program and see if you can identify the following Imperative paradigm components:

- **Sequence** (what is the order of commands?)
- **Selection** (where is a choice made?)
- **Repetition** (what section of code loops?)
Line following with Robolab